СОДЕРЖАНИЕ.
1 УСЛОВИЯ ЭКСПЛУАТАЦИИ МОСТА.
2 МАТЕРИАЛЫ.
3 КОНСТРУКТИВНОЕ РЕШЕНИЕ ПРОЛЕТНОГО СТРОЕНИЯ.
4 АРМИРОВАНИЕ ПЛИТЫ НАПРЯГАЕМОЙ АРМАТУРОЙ.
5 АРМИРОВАНИЕ ПЛИТЫ НЕНАПРЯГАЕМОЙ АРМАТУРОЙ.
6 МОСТОВОЕ ПОЛОТНО.
6.1Одежда.
6.2 Тротуар.
6.3 Ограждение.
6.4 Водоотвод.
7 ОПОРНЫЕ ЧАСТИ.
8 НАГРУЗКИ.
9 РАСПРЕДЕЛЕНИЕ ВРЕМЕННОЙ НАГРУЗКИ МЕЖДУ ПЛИТАМИ ПРОЛЕТНОГО СТРОЕНИЯ.
10 ОПРЕДЕЛЕНИЕ ВНУТРЕННИХ УСИЛИЙ В ПЛИТАХ.
11 СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ.
1 УСЛОВИЯ ЭКСПЛУАТАЦИИ МОСТА.
Температура наружного воздуха.
Средняя по месяцам, 0С:
январь — 11,3
февраль — 11
март — 6,5
апрель 1,5
май 8,2
июнь 13,8
июль 16,8
август 14,4
сентябрь 8,8
октябрь 2,5
ноябрь — 3,2
декабрь — 8,5
Среднегодовая 2,20С
Абсолютная минимальная — 440С
Абсолютная максимальная 340С
Средняя максимальная наиболее жаркого месяца 22,10С
Наиболее холодных суток обеспеченностью:
0,98 — 380С
0,92 — 350С
Наиболее холодной пятидневки обеспеченностью:
0,98 — 340С
0,92 — 310С
Период со средней суточной температурой воздуха:
<80С :
продолжительность суток 236
средняя температура — 40С
<100С :
продолжительность суток 259
средняя температура — 2,80С
Средняя температура наиболее холодного периода: -150С
Продолжительность периода со среднесуточной температурой <00С, сут.
164
Упругость водяного пара наружного воздуха по месяцам, гПа:
январь 2,8
февраль 2,7
март 3,2
апрель 5,1
май 7,2
июнь 11
июль 13,8
август 13,4
сентябрь 9,9
октябрь 6,7
ноябрь 4,8
декабрь 3,5
Средняя месячная относительная влажность воздуха в 13 ч., %:
наиболее холодного месяца 87
наиболее жаркого месяца 57
Количество осадков, мм:
за год 758
жидких и смешанных за год —
суточный максимум 95
Плиты пролетного строения проектируются для эксплуатации в
климатической зоне нормальной влажности.
2 МАТЕРИАЛЫ.
Для изготовления плит пролетного строения применяется тяжелый бетон
класса по прочности на сжатие В 35, марка бетона по морозоустойчивости F
200, ГОСТ 25192- 82 и ГОСТ 26633- 85. Арматура, применяемая в плитах,-
напрягаемая, горячекатаная, класса А- 4; ненапрягаемая- класса А 2, по ГОСТ
578-82. Для закладных, анкеров и прочих изделий применяется сталь по ГОСТ
103- 56* 16Д, 15х СНД- 2.
3 КОНСТРУКТИВНЫЕ РЕШЕНИЯ ПРОЛЕТНОГО СТРОЕНИЯ.
В соответствии с заданием выполняется проект однопролетного моста.
Длина пролетного строения 17,5 м. Несущий элемент моста- сборные
железобетонные плиты с напрягаемой арматурой. Принять пролетное строение из
14 плит, с поперечным прямоугольным сечением с овальными пустотами.
Для обеспечения работы, плиты укладывают на опоры параллельно друг
другу, и объединяют в поперечном направлении. Швы между плитами
омоналичивают, придавая им шпоночную форму.
4 АРМИРОВАНИЕ ПЛИТЫ НАПРЯГАЕМОЙ АРМАТУРОЙ.
Для плит применяется напрягаемая арматура класса А- 4.В процессе
изготовления арматура натягивается на упоры с начальным контролируемым
напряжением ?sp=675МПа.Для восприятия растягивающих напряжений при
изготовлении в верхней зоне плиты устанавливается напрягаемая арматура
класса А- 4.
5 АРМИРОВАНИЕ ПЛИТЫ НЕНАПРЯГАЕМОЙ АРМАТУРОЙ.
Для плит применяется ненапрягаемая арматура из стали класса А- 2.При
изготовлении устанавливается в виде каркасов и сеток.
6 МОСТОВОЕ ПОЛОТНО.
6.1 Одежда.
Конструкция одежды ездового полотна состоит из нижнего и верхнего слоя
асфальтобетона общей толщиной 7 см.Асфальтобетон- мелкозернистый, ГОСТ 9128-
84.
В качестве защитного слоя гидроизоляции предусмотрен бетон,
армированный сварной сеткой по ГОСТу 23279-85, толщиной 40 мм. Арматура
изготовлена в виде сварной сетки из стали класса ВА- 1 по ГОСТ 6227-80.
6.2 Тротуар.
Тротуары состоят из накладных сборных блоков, с ограждениями с наружных
сторон.Ширина тротуаров принята- 1,5 м.Конструкция одежды на тротуарах
состоит из асфальтобетона, уложенного по плитам тротуарных блоков.
6.3 Ограждение.
Принято металлическое, полужесткого типа, барьерное ограждение по ГОСТ
26809-86.Высота ограждения 75 см.
6.4 Водоотвод.
Для обеспечения отвода воды с проезжей части мост расположен на
продольном уклоне 4 0/00, поперечный уклон моста 20 0/00. Предусмотрен
отвод воды с ездового полотна и тротуаров через водоотводные трубки или
вдоль ограждения за пределы моста.
7 ОПОРНЫЕ ЧАСТИ.
Плиты пролетного строения опираются на резиновые опорные части.
Рис. 8.2 Поперечное сечение плитного пролетного строения.
Рис. 8.3 Поперечное сечение плит (размеры в см).
Рис. 8.4 Конструкция дорожной одежды: а- в пределах ездового полотна;
б- на тротуаре: 1- асфальтобетон ?=7 см, ?=2,3 т/м3; 2- то же, ?=4 см; 3-
защитный слой из армированного бетона, ?=4 см, ?=2,5 т/м3; 4-
гидроизоляция, ?=1 см,?=1,5 т/м3; 5- цементная стяжка, ?=3 см, ?=2,1т/м3;
6- железобетонная плита пролетного строения; 7- плита тротуарного блока.
8 НАГРУЗКИ.
Исходные данные:
Автодорожный мост на дороге 2 технической категории пролетом 17,5 м
имеет габарит
Г- 11,5 и два тротуара по 1,5 м (рис. 8.2). Пролетное строение
образовано из четырнадцати предварительно напряженных плит, объединенных
между собой в поперечном направлении шпоночными швами (рис. 8.3). Оси
опирания на опорные части отстоят от концов плит на 0,3 м. Расчетная схема
пролетного строения- однопролетная балка с расчетным пролетом lp=17,5-
2*0,3=16,9 м.
Нагрузка на тротуары моста при учете совместно с другими нагрузками:
Р=3,92- 0,0196?, кПа,
где ?- длина загружания.
Расчетные нагрузки.
Расчетные нагрузки представляют собой нормативную нагрузку, умноженную
на коэффициент надежности по нагрузке ?f :
?f =1,3 , для веса выравнивающего, изоляционного и защитного слоев;
?f =1,1 , для веса элементов железобетонного пролетного строения;
?f =1,2 , для равномерно распределенной нагрузки;
?f =1,5 , для тележки при расчетах элементов проезжей части;
?f =1,2 , для одиночной оси.
Динамические коэффициенты для нагрузки А 11.
1+?=1+(45-?/135) ,> 1,0
?f =1,0 для НК- 80
?f =1,2 при расчетах тротуаров совместно с другими нагрузками.
1+?=1,3 при ?<1,0 м
1+?=1,2 при ?> 5,0 м для нагрузки НК- 80
1+?=1 к нагрузке на тротуарах.
Нагрузки.
Конструкции моста рассчитаны на следующие нагрузки и воздействия:
Постоянные: собственный вес конструкций и воздействие усилия
предварительного обжатия.
Временные: вертикальные от подвижного состава и пешеходов.
Определение нагрузок.
Постоянная нагрузка на пролетное строение состоит из собственного веса
сборных плит длинной 17,5 м, тротуаров, перильной одежды.
Собственный вес одного метра плиты (рис. 8.3) с учетом бетона
продольных швов при плотности железобетона ? =2,5 т/м3 [1*0,75-2*0,325*0,3-
2(3,14*0,3252/4)]*2,5 *
*10=9,72 кН/м. В скобках записана площадь поперечного сечения плиты как
площадь прямоугольника минус площадь двух отверстий, каждая из которых
состоит из площади прямоугольника (второй член) и площади двух полукругов
или одного круга ( третий член).
При четырнадцати плитах по ширине пролетного строения на 1 м его длины
приходится:
9,72*14=136,11 кН/м.
Вес двух тротуаров шириной 1,5 м каждый и перильного ограждения по
типовому проекту 2*15=30 кН/м.
Общий собственный вес конструкции на всю ширину пролетного строения
136,11+30=166,11 кН/м.
Принятая конструкция дорожной одежды показана на рис. 8.4 (поперечный
уклон моста создается за счет уклона ригеля).
Вес дорожной одежды с полной ширины пролетного строения:
асфальтобетон на проезжей части моста и полосах безопасности
0,07*11,5*2,3*10=18,51 кН/м;
асфальтобетон на тротуарах
0,04*1,5*2*2,3*10=2,76 кН/м;
суммарный вес покрытия ездового полотна и тротуаров
18,51+2,76=21,27 кН/м;
защитный слой из армированного бетона
0,04*11,5*2,5*10=11,5 кН/м;
гидроизоляция
0,01*11,5*1,5*10=1,73 кН/м;
цементная стяжка
0,03*11,5*2,1*10=7,25 кН/м;
суммарный вес защитных и выравнивающего слоев
11,5+1,73+7,25=20,48 кН/м.
Распределив всю нагрузку между плитами поровну, получим на одну плиту:
от собственного веса конструкций
g1=166,11/13,7=12,12 кН/м;
от покрытия ездового полотна и тротуаров
g2=21,27/13,7=1,55 кН/м;
от выравнивающего, изоляционного и защитного слоев
g3=20,48/13,7=1,49 кН/м.
Разделение постоянной нагрузки на три части g1, g2, g3 вызвано разными
коэффициентами надежности для этих нагрузок.
Временная нагрузка на пролетное строение для дороги 2 технической
категории принимается от автотранспортных средств А-11, от толпы на
тротуарах и от тяжелых транспортных единиц НК- 800.
Рис. 8.1 Нагрузки на мост Г 11.5 .
Схемы автомобильных нагрузок А 11 в виде полосы равномерно
распределенной нагрузки интенсивностью V=0,98*11 кН/м =0,1*11 тс/м и
одиночной тележки с давлением на ось Р=9,81*11 кН = 11 тс .
Схема от тяжелой одиночной нагрузки в виде колесной нагрузки (с одной
четырехосной машины) НК 80 общим весом 785 кН (80 тс).
9 РАСПРЕДЕЛЕНИЕ ВРЕМЕННОЙ НАГРУЗКИ МЕЖДУ ПЛИТАМИ ПРОЛЕТНОГО СТРОЕНИЯ.
Метод внецентренного сжатия.
В этом методе наиболее нагруженной всегда является крайняя плита
пролетного строения. Линия влияния давления на нее строится по значениям
ординат под крайними плитами
?=1/n+а12/2?ai2
где n- число плит в поперечном сечении моста, n=14; аi- расстояние
между центрами тяжести симметричных относительно оси моста плит: а1= 13 м,
а2= 11 м, а3= 9 м, а4=7 м,
а5= 5 м, а6= 3 м, а7= 1 м;
?аi2=132+112+92+72+52+32+12=455.
Ординаты линии влияния давления на крайнюю левую плиту (рис. 9.1, 9.2,
9.3):
?1=1/14+132/2*455=0,257;
?1^=1/14-132/2*455=- 0,144.
Коэффициенты поперечной установки определяем для каждого вида нагрузки
отдельно как сумму ординат линии влияния давления под центрами тяжести
транспортных единиц или полос, для толпы- как ординату под точкой
приложения равнодействующей.
При загружании линии влияния нагрузки устанавливаем в самое невыгодное
положение с учетом габаритов проезда и правил расстановки автомобилей.
Принятый на пролетном строении габарит Г- 11,5 предусматривает две полосы
движения. Поэтому в нашем случае расчетное число полос нагрузки А- 11- две.
Для нагрузки А- 11 рассматриваем два варианта расстановки.
Первый вариант- расчетные полосы нагрузки смещаются на край проезжей
части с минимальным расстоянием 1,5 м от оси крайней полосы безопасности. В
этом варианте усилия от нагрузки А- 11 сочетаются с усилиями от толпы на
тротуаре.
Рис.9.1 Загружание пролетного строения методом внецентренного сжатия
для нагрузки А- 11 и толпы на тротуаре (размеры в м).
Второй вариант- две полосы (независимо от габарита моста,
предусматривающего более одной полосы движения) устанавливаются на край
ездового полотна с минимальным расстоянием 1,5 м от оси крайней полосы до
бордюра (усилия, соответствующие этому положению нагрузки, учитываются лишь
в расчетах на прочность).
Следует помнить, что при определении КПУ для полосовой нагрузки А- 11,
для всех полос, кроме первой, в качестве множителя к ординатам должен быть
введен коэффициент s1=0,6, учитывающий возможное неполное загружание полос
автомобилями.
Рис. 9.2 Загружание пролетного строения методом внецентренного сжатия
для нагрузки А- 11 (размеры в м).
Нагрузка НК- 80 устанавливается на краю проезжей части.
Коэффициенты поперечной установки от двух полос нагрузки А- 11 на краю
проезжей части (рис. 9.3):
для полосовой нагрузки
КПУА=0,136+0,6*0,107=0,257;
для тележек
КПУАт=0,136+0,05=0,186.
Рис. 9.3 Загружание пролетного строения по методу внецентренного сжатия
для нагрузки НК- 80 (размеры в м).
Коэффициенты поперечной установки от толпы на тротуаре КПУт= 0,264.
Коэффициенты поперечной установки от двух полос нагрузки А 11 на краю
ездового полотна (рис.9.2):
для полосовой нагрузки
КПУА= 0,193+0,6*0,107=0,257;
для тележек
КПУАт= 0,193+0,107= 0,3.
Коэффициент поперечной установки от нагрузки НК- 80 на краю проезжей
части (расстояние от равнодействующей до края полосы безопасности 1,75 м),
КПУК=0,128.
Метод внецентренного сжатия моментом кручения.
По обобщенному методу внецентренного сжатия М.Е.Гибшмана ординаты под
центрами тяжести крайних плит линии влияния давления на крайнюю плиту
вычисляются по формуле:
?=1/ n± а12/ 2?а12+4n(К/ П)
где n- число плит в поперечном сечении, n=14; К- прогиб плиты в сечении
под единичной силой вызванный этой силой; П- угол закручивания плиты в
месте приложения единичного крутящего момента, вызванный этим моментом; К и
П определяются в том же сечении, что и КПУ.
Для середины пролета балки:
К/ П=(1/ 12)*(G Ik/ E I)l2.
Момент инерции поперечного сечения плиты i определяем из условия
равенства их площадей и моментов инерции.
Площадь овального отверстия (рис.9.4):
А1=d1h1+(?d2/ 4)=32,5*3+(3,14*32,52/ 4)=1804 см2.
Момент инерции овального отверстия относительно его центральной оси
x1- x1:
Ix1=d1h13/ 12+2[0,00686 d4+ ?d2/ 8(0,2122d+h1/ 2)2]=32,5*303/
12+2[0,00686*
*32,54+3,14*32,52/ 8(0,2122*32,5+30/ 2)2]= 486000 см4.
Для прямоугольника Ix1=bhn13/ 12=A1hn12/ 12, отсюда hn1=…12 Ix1/
A1=…12*
*486000/ 1804= 56,9? 57 cм.
Приведенное поперечное сечение плиты показано на рис.9.4.
Толщина верхней плиты:
hI^=6,5+(62,5- 57/ 2)=9,25 см.
Толщина нижней плиты:
hI=6+(62,5- 57/ 2)= 8,75 см.
Положение центра тяжести плиты относительно ее нижней грани:
Sn=100*752/ 2- 2*32,5*57(8,75+57/ 2)= 143239 см3;
Аn=100*75- 2*32,5*57= 3795 см2;
y =Sn/ An= 143239/ 3795= 37,74 см.
Момент инерции поперечного сечения:
I=100*753/ 12+100*75(75/ 2- 37,74)2- 2[32,5*573/ 12+32,5*57(57/ 2+8,75-
— 37,74)2]= 25,12*105 см4= 25,12*10-3 м4.
Момент инерции кручения определяется для замкнутого коробчатого сечения
без учета средней стенки, так как в силу симметрии сечения касательные
напряжения в ней отсутствуют:
Iк=4а12*а22/ [а2/ с2+ а2/ с3+ 2(а1/ с1)],
где а1 и а2- высота и ширина прямоугольника, образованного прямыми,
проведенными посередине толщины стенок коробки; с1, с2 и с3- соответственно
толщины боковых, нижних и верхней стенок коробки (рис.9.4).
Тогда:
Iк=4*662*87,52/ [87,5/ 8,75+ 87,5/ 9,25+ 2(66/ 12,5)]= 44,44*105 см4=
44,44*10-3 м4.
Поправка на кручение:
4n(К/ П)=(1/ 3)n(GIk/ E I)lp2= (1/ 3)*14(0,42*44,44*10-3/ 25,12*10-
3)16,92= 999,63.
Отношение G/ E принято равным 0,42.
Краевые ординаты линии влияния давления:
?1=1/ 14+ 132/ 2*455+ 999,63= 0,159;
?1^=1/ 14- 132/ 2*455+ 999,63= — 0,017.
Загружание линии влияния производим по описанным выше правилам
(рис.9.5).
Коэффициенты поперечной установки от двух полос нагрузки А- 11 на краю
проезжей части:
для полосовой нагрузки
КПУА=0,101+ 0,6*0,068=0,142;
для тележек
КПУАт=0,101+ 0,068= 0,169.
Коэффициент поперечной установки от нагрузки НК- 800 на краю проезжей
части КПУК= 0,098.
Коэффициент поперечной установки от толпы на левом тротуаре
КПУт= 0,161.
Метод Б.Е.Улицкого.
Ведя расчет по этому методу, принимаем, что все плиты в поперечном
направлении соединены между собой шарнирами, расположенными в уровне
нейтральной плоскости. Расчленяем пролетное строение на отдельные плиты,
проводя вертикальные сечения по шарнирам. Взаимодействие отдельных плит
между собой характеризуется поперечными силами Q (x) в этих сечениях. Закон
изменения поперечных сил вдоль пролета принят в виде:
Q(x)=??n=1 g sin n?x/ l ,
где g=2/ l Sl0Q(x)sin (n?x/ l)dx.
Число неизвестных в системе равно числу сечений- в нашем примере
тринадцати (рис.9.6).
Для определения их составляется система уравнений, каждое из которых
выражает равенство кривизн волокон соседних плит в вертикальной плоскости.
В сечении i:
(Б- Ebцbn/ Glk)gi-1- 2(Б+ Ebц bn/ Glk)gi+ (Б- Ebцbn/ Glk)gi+1=(- Кл+
Кпр)*[1± {El/ Glk}bэbц*
*(n?/ l)2],
где Б=l2/ n2?2l- характеризует деформации волокон, вызванные изгибом в
вертикальной плоскости силами Q(x); bц- расстояние от расчетного сечения до
центра изгиба плиты; bn- расстояние от плоскости действия сил Q(x) до
центра изгиба плиты; bэ- расстояние от плоскости действия внешних сил до
центра изгиба плиты.
Геометрические характеристики сечения плиты, полученные из предыдущих
расчетов:
I= 25,12*105 см4; Ik= 44,44*105 см4; G/ E= 0,42.
Поскольку поперечное сечение плиты симметрично, то центр изгиба плиты
лежит на оси симметрии и bц=bn=bэ= 50 см.
Коэффициенты при неизвестных g вычисляются при
Б= 16902/ n2?2 25,12*105= 0,115/ n2;
Ebцbn/ GIk=502/ 0,42*44,44*105= 0,0014.
Значения грузовых членов определяем исходя из загружения пролетного
строения еденичной равномерно распределенной вдоль пролета нагрузкой q= 1
Н/ см.
При этом:
К= 2 l2q/ n3?3l(1- cos n?)= 2*16902*1/ n3?3 25,12*105(1- cos n?)=
0,074/ n3(1- cos n?)=
=0,147.
При установке экстремальные коэффициенты каждого метода сведены в
таблицу 9.1.
Таблица 9.1 Коэффициенты поперечной установки, полученные разными
методами.
Анализ данных, помещенных в табл. 9.1, показывает, что коэффициенты
поперечной установки, определенные по методу внецентренного сжатия,
оказываются существенно разными по сравнению с определенными другими
методами. Наибольшее приближение к значениям, полученным по методу
Б.Е.Улицкого, основанному на наиболее точных предпосылках, дает метод
распределения нагрузки для плитных пролетных строений М.Е.Гибшмана.
При выполнении курсовых и дипломных проектов, если отношение ширины
плитного пролетного строения к длине пролета меньше единицы, можно
пользоваться методом распределения нагрузки для плитных пролетных строений
М.Е.Гибшмана либо обобщенным методом внецентренного сжатия.
В сечениях у опор считаем, что каждая из плит воспринимает лишь
нагрузку, расположенную непосредственно на ней.
Поскольку расстояния между центрами полос нагрузки А-11 и между
центрами колес нагрузки НК- 800 превышает ширину одной плиты, то на плите
размещается лишь одна колея нагрузки или одно колесо и коэффициент
поперечной установки в этих случаях КПУоп=0,5.