Тригонометрия (Шпаргалка)

ARCSIN a
-(/2(arcsin a ((/2 sin(arcsin a)=a
arcsin (-a)= -arcsin a
|a |0|1/|(2/|(3/|1 |
| | |2 |2 |2 | |
|arcsin|0|(/|(/4|(/3|(/|
|a | |6 | | |2 |

SIN X= A
x=(-1)n arcsin a +(k
|sin x=0|x=(k |
|sin x=1|x=(/2+2(k |
|sin |x=-(/2+2(k |
|x=-1 | |

ARCCOS a
0 (arccos a (( cos(arccos a)=a
arccos (-a)=( -arccos a
|a |0 |1/|(2/|(3/|1|
| | |2 |2 |2 | |
|arccos|(/|(/|(/4|(/6|0|
|a |2 |3 | | | |

COS X= A
x=( arccos a +2(k
|cos x=0|x=(/2+(k |
|cos x=1|x=2(k |
|cos |x=(+2(k |
|x=-1 | |

ARCTG a
-(/2(arctg a ((/2 tg(arctg a)=a
arctg (-a)= -arctg a
|a |0 |(3/|1 |(3 |
| | |3 | | |
|tg|0 |(/6|(/4|(/3 |
|a | | | | |

TG X= A
x=( arctg a +(k

sin(*cos(=1/2[sin((-()+sin((+()]
sin(*sin(=1/2[cos((-()-cos((+()]
cos(*cos(=1/2[cos((-()+cos((+b)]

Добавить комментарий