Круговорот веществ в природе

Содержание.

| |Лист. |
|1. Биогеохимические круговороты. |3 |
|2. Круговорот веществ в биосфере. |5 |
|3. Круговорот углерода. |6 |
|4. Круговорот кислорода. |9 |
|5. Круговорот азота. |10 |
|6. Круговорот фосфора. |12 |
|7. Круговорот серы. |13 |
|8. Круговорот воды. |16 |
|9. Антропогенные воздействия на окружающую среду. |17 |
|Использованная литература. |19 |

1. Биогеохимические круговороты.

В отличие от энергии, которая однажды использованная организмом,
превращается в тепло и теряется для экосистемы, вещества циркулируют в
биосфере, что и называется биогеохимическими круговоротами. Из 90 с лишним
элементов, встречающихся в природе, около 40 нужны живым организмам.
Наиболее важные для них и требующиеся в больших количествах: углерод,
водород, кислород, азот. Кислород поступает в атмосферу в результате
фотосинтеза и расходуется организмами при дыхании. Азот извлекается из
атмосферы благодаря деятельности азотофиксирующих бактерий и возвращается в
неё другими бактериями.

Круговороты элементов и веществ осуществляются за счёт
саморегулирующих процессов, в которых участвуют все составные части
экосистем. Эти процессы являются безотходными. В природе нет ничего
бесполезного или вредного, даже от вулканических извержений есть польза,
так как с вулканическими газами в воздух поступают нужные элементы,
например, азот.

Существует закон глобального замыкания биогеохимического круговорота в
биосфере, действующий на всех этапах её развития, как и правило увеличения
замкнутости биогеохимического круговорота в ходе сукцессии. В процессе
эволюции биосферы увеличивается роль биологического компонента в замыкании
биогеохимического круговорота. Ещё большую роль на биогеохимический
круговорот оказывает человек. Но его роль осуществляется в противоположном
направлении. Человек нарушает сложившиеся круговороты веществ, и в этом
проявляется его геологическая сила, разрушительная по отношению к биосфере
на сегодняшний день.

Когда 2 млрд. лет тому назад на Земле появилась жизнь, атмосфера
состояла из вулканических газов. В ней было много углекислого газа и мало
кислорода (если вообще был), и первые организмы были анаэробными. Так как
продукция в среднем превосходила дыхание, за геологическое время в
атмосфере накапливался кислород и уменьшалось содержание углекислого газа.
Сейчас содержание углекислого газа в атмосфере увеличивается в результате
сжигания больших количеств горючих ископаемых и уменьшения поглотительной
способности «зелёного пояса». Последнее является результатом уменьшения
количества самих зелёных растений, а также связано с тем, что пыль и
загрязняющие частицы в атмосфере отражают поступающие в атмосферу лучи.

В результате антропогенной деятельности степень замкнутости
биогеохимических круговоротов уменьшается. Хотя она довольно высока (для
различных элементов и веществ она не одинакова), но тем не менее не
абсолютна, что и показывает пример возникновения кислородной атмосферы.
Иначе невозможна была бы эволюция (наивысшая степень замкнутости
биогеохимических круговоротов наблюдается в тропических экосистемах –
наиболее древних и консервативных).

Таким образом, следует говорить не об изменении человеком того, что не
должно меняться, а скорее о влиянии человека на скорость и направление
изменений и на расширение их границ, нарушающее правило меры преобразования
природы. Последнее формулируется следующим образом: в ходе эксплуатации
природных систем нельзя превышать некоторые пределы, позволяющие этим
системам сохранять свойства самоподдержания. Нарушение меры как в сторону
увеличения, так и в сторону уменьшения приводит к отрицательным
результатам. Например, избыток вносимых удобрений столь же вреден, сколь и
недостаток. Это чувство меры утеряно современным человеком, считающим, что
в биосфере ему всё позволено.

Надежды на преодоление экологических трудностей связывают, в
частности, с разработкой и введением в эксплуатацию замкнутых
технологических циклов. Создаваемые человеком циклы превращения материалов
считается желательным устраивать так, чтобы они были подобны естественным
циклам круговорота веществ. Тогда одновременно решались бы проблемы
обеспечения человечества невосполнимыми ресурсами и проблема охраны
природной среды от загрязнения, поскольку ныне только 1 – 2% веса природных
ресурсов утилизируется в конечном продукте.

Теоретически замкнутые циклы превращения вещества возможны. Однако
полная и окончательная перестройка индустрии по принципу круговорота
вещества в природе не реальна. Хотя бы временное нарушение замкнутости
технологического цикла практически неизбежно, например, при создании
синтетического материала с новыми, неизвестными природе свойствами. Такое
вещество вначале всесторонне апробируется на практике, и только потом могут
быть разработаны способы его разложения с целью внедрения составных частей
в природные круговороты.

2. Круговорот веществ в биосфере.

Процессы фотосинтеза органического вещества из неорганических
компонентов продолжается миллионы лет, и за такое время химические элементы
должны были перейти из одной формы в другую. Однако этого не происходит
благодаря их круговороту в биосфере. Ежегодно фотосинтезирующие организмы
усваивают около 350 млрд т углекислого газа, выделяют в атмосферу около 250
млрд т кислорода и расщепляют 140 млрд т воды, образуя более 230 млрд т
органического вещества (в пересчёте на сухой вес).

Громадные количества воды проходят через растения и водоросли в
процессе обеспечения транспортной функции и испарения. Это приводит к тому,
что вода поверхностного слоя океана фильтруется планктоном за 40 дней, а
вся остальная вода океана – приблизительно за год. Весь углекислый газ
атмосферы обновляется за несколько сотен лет, а кислород за несколько
тысяч лет. Ежегодно фотосинтезом в круговорот включается 6 млрд т азота,
210 млрд т фосфора и большое количество других элементов (калий, натрий,
кальций, магний, сера, железо и др.). существование этих круговоротов
придаёт экосистеме определённую устойчивость.

Различают два основных круговорота: большой (геологический) и малый
(биотический).

Большой круговорот, продолжающийся миллионы лет, заключается в том,
что горные породы подвергаются разрушению, а продукты выветривания (в том
числе растворимые в воде питательные вещества) сносятся потоками воды в
Мировой океан, где они образуют морские напластования и лишь частично
возвращаются на сушу с осадками. Геотектонические изменения, процессы
опускания материков и поднятия морского дна, перемещения морей и океанов в
течение длительного времени приводят к тому, что эти напластования
возвращаются на сушу и процесс начинается вновь.

Малый круговорот (часть большого) происходит на уровне экосистемы и
состоит в том, что питательные вещества, вода и углерод аккумулируются в
веществе растений, расходуются на построение тела и на жизненные процессы
как самих этих растений, так и других организмов (как правило животных),
которые поедают эти растения (консументы). Продукты распада органического
вещества под действием деструкторов и микроорганизмов (бактерии, грибы,
черви) вновь разлагаются до минеральных компонентов, доступных растениям и
вовлекаемых ими в потоки вещества.

Круговорот химических веществ из неорганической среды через
растительные и животные организмы обратно в неорганическую среду с
использованием солнечной энергии и энергии химических реакций называется
биогеохимическим циклом. В такие циклы вовлечены практически все химические
элементы и прежде всего те, которые участвуют в построении живой клетки.
Так, тело человека состоит из кислорода (62,8%), углерода (19,37%),
водорода (9,31%), азота (5,14%), кальция (1,38%), фосфора (0,64%) и ещё
примерно из 30 элементов.

3. Круговорот углерода.

Самый интенсивный биогеохимический цикл – круговорот углерода. В
природе углерод существует в двух основных формах – в карбонатах
(известняках) и углекислом газе. Содержание последнего в 50 раз больше, чем
в атмосфере. Углерод участвует в образовании углеводов, жиров, белков и
нуклеиновых кислот.

Основная масса аккумулирована в карбонатах на дне океана (1016 т), в
кристаллических породах (1016 т), каменном угле и нефти (1016 т) и
участвует в большом цикле круговорота.

Основное звено большого круговорота углерода – взаимосвязь процессов
фотосинтеза и аэробного дыхания (рис. 1).

Другое звено большого цикла круговорота углерода представляет собой
анаэробное дыхание (без доступа кислорода); различные виды анаэробных
бактерий преобразуют органические соединения в метан и другие вещества
(например, в болотных экосистемах, на свалках отходов).

В малом цикле круговорота участвует углерод, содержащийся в
растительных тканях (около 1011 т) и тканях животных (около 109 т).

Более подробная схема круговорота представлена на рис. 2.

Сжигание и
Тепло Тепло

выветривание

Рис. 1. Круговорот углерода в процессах фотосинтеза и аэробного дыхания.

Растворяется
в
дождевой
воде

Рис. 2. Круговорот углерода.

4. Круговорот кислорода.

В количественном отношении главной составляющей живой материи является
кислород, круговорот которого осложнён его способностью вступать в
различные химические реакции, главным образом реакции окисления. В
результате возникает множество локальных циклов, происходящих между
атмосферой, гидросферой и литосферой.

Кислород, содержащийся в атмосфере и в поверхностных минералах
(осадочные кальциты, железные руды), имеет биогенное происхождение и должно
рассматриваться как продукт фотосинтеза. Этот процесс противоположен
процессу потребления кислорода при дыхании, который сопровождается
разрушением органических молекул, взаимодействием кислорода с водородом
(отщеплённым от субстрата) и образованием воды. В некотором отношении
круговорот кислорода напоминает обратный круговорот углекислого газа. В
основном он происходит между атмосферой и живыми организмами.

Потребление атмосферного кислорода и его возмещение растениями в
процессе фотосинтеза осуществляется довольно быстро. Расчёты показывают,
что для полного обновления всего атмосферного кислорода требуется около
двух тысяч лет. С другой стороны, для того, чтобы все молекулы воды
гидросферы были подвергнуты фотолизу и вновь синтезированы живыми
организмами, необходимо два миллиона лет. Большая часть кислорода,
вырабатываемого в течение геологических эпох, не оставалась в атмосфере, а
фиксировалась литосферой в виде карбонатов, сульфатов, оксидов железа, и её
масса составляет 5,9*1016 т. Масса кислорода, циркулирующего в биосфере в
виде газа или сульфатов, растворённых в океанических и континентальных
водах, в несколько раз меньше (0,4*1016 т).

Отметим, что, начиная с определённой концентрации, кислород очень
токсичен для клеток и тканей (даже у аэробных организмов). А живой
анаэробный организм не может выдержать (это было доказано ещё в прошлом
веке Л. Пастером) концентрацию кислорода, превышающую атмосферную на 1%.

5. Круговорот азота.

Газообразный азот возникает в результате реакции окисления аммиака,
образующегося при извержении вулканов и разложении биологических отходов:

4NH3 + 3O2 ( 2N2 + 6H2O.

Круговорот азота – один из самых сложных, но одновременно самых
идеальных круговоротов. Несмотря на то что азот составляет около 80%
атмосферного воздуха, в большинстве случаев он не может быть
непосредственно использован растениями, т.к. они не усваивают газообразный
азот. Вмешательство живых существ в круговорот азота подчинено строгой
иерархии: только определённые категории организмов могут оказывать влияние
на отдельные фазы этого цикла. Газообразный азот непрерывно поступает в
атмосферу в результате работы некоторых бактерий, тогда как другие бактерии
– фиксаторы (вместе с сине-зелёными водорослями) постоянно поглощают его,
преобразуя в нитраты. Неорганическим путём нитраты образуются и в атмосфере
в результате электрических разрядов во время гроз.

Самые активные потребители азота – бактерии на корневой системе
растений семейства бобовых. Каждому виду этих растений присущи свои особые
бактерии, которые превращают азот в нитраты. В процессе биологического
цикла нитрат-ионы (NO3-) и ионы аммония (NH4+), поглощаемы растениями из
почвенной влаги, преобразуются в белки, нуклеиновые кислоты и т.д. Далее
образуются отходы в виде погибших организмов, являющихся объектами
жизнедеятельности других бактерий и грибов, преобразующих их в аммиак. Так
возникает новый цикл круговорота. Существуют организмы, способные
превращать аммиак в нитриты, нитраты и в газообразный азот. Основные звенья
круговорота азота в биосфере представлены схемой на рис. 3.

Биологическая активность организмов дополняется промышленными
способами получения азотосодержащих органических и неорганических веществ,
многие из которых применяются в качестве удобрений для повышения
продуктивности и роста растений.

Антропогенное влияние на круговорот азота определяется следующими
процессами:

1. сжигание топлива приводит к образованию оксида азота, а затем
реакциям:
2. 2NO + O2 ( 2NO2 ,
3. 4NO2 + 2H2O.+ O2 ( 4HNO3 ,
4. способствуя выпадению кислотных дождей;

Молнии

Денитрифицирующие

Азотфиксирую-
бактерии
щие бактерии

Сине-
зелёные

Бактерии Осадки водоросли

Бактерии

Бактерии

Бактерии

Рис. 3. Круговорот азота.

5. в результате воздействия некоторых бактерий на удобрения и отходы
животноводства образуется закись азота – один из компонентов,
создающих парниковый эффект;
6. добыча полезных ископаемых, содержащих нитрат-ионы и ионы аммония,
для производства минеральных удобрений;
7. при сборе урожая из почвы выносятся нитрат-ионы и ионы аммония;
8. стоки с полей, ферм и из канализаций увеличивают количество нитрат-
ионов и ионов аммония в водных экосистемах, что ускоряет рост
водорослей и других растений; при разложении последних расходуется
кислород, что в конечном счёте приводит к гибели рыб.

6. Круговорот фосфора.

Фосфор – один из основных компонентов (главным образом в виде [pic] и
[pic]) живого вещества и входит в состав нуклеиновых кислот (ДНК и РНК),
клеточных мембран, аденозинтрифосфата (АТФ) и аденозиндифосфата (АДФ),
жиров, костей и зубов. Круговорот фосфора, как и других биогенных
элементов, совершается по большому и малому циклам.

Запасы фосфора, доступные живым существам, полностью сосредоточены в
литосфере. Основные источники неорганического фосфора – изверженные или
осадочные породы. В земной коре содержание фосфора не превышает 1%, что
лимитирует продуктивность экосистем. Из пород земной коры неорганический
фосфор вовлекается в циркуляцию континентальными водами. Он поглощается
растениями, которые при его участии синтезируют различные органические
соединения и таким образом включаются в трофические цепи. Затем
органические фосфаты вместе с трупами, отходами и выделениями живых существ
возвращаются в землю, где снова подвергаются воздействию микроорганизмов и
превращаются в минеральные формы, употребляемые зелёными растениями.

В экосистеме океана фосфор приносится текучими водами, что
способствует развитию фитопланктона и живых организмов.

В наземных системах круговорот фосфора проходит в оптимальных
естественных условиях с минимумом потерь. В океане дело обстоит иначе. Это
связано с постоянным оседанием (седиментацией) органических веществ.
Осевший на небольшой глубине органический фосфор возвращается в круговорот.
Фосфаты, отложенные на больших морских глубинах не участвуют в малом
круговороте. Однако тектонические движения способствуют подъёму осадочных
пород к поверхности.

Таким образом фосфор медленно перемещается из фосфатных месторождений
на суше и мелководных океанических осадков к живым организмам и обратно
(рис. 4).

Рассматривая круговорот фосфора в масштабе биосферы за сравнительно
короткий период, можно сделать вывод, что он полностью не замкнут. Запасы
фосфора на земле малы. Поэтому считают, что фосфор – основной фактор,
лимитирующий рост первичной продукции биосферы. Полагают даже, что фосфор –
главный регулятор всех других биогеохимических циклов, это – наиболее
слабое звено в жизненной цепи, которая обеспечивает существование человека.

Антропогенное влияние на круговорот фосфора состоит в следующем:

1. добыча больших количеств фосфатных руд для минеральных удобрений и
моющих средств приводит к уменьшению количества фосфора в
биотическом круговороте;
2. стоки с поле, ферм и коммунальные отходы приводят к увеличению
фосфат-ионов в водоёмах, к резкому росту водных растений и
нарушению равновесия в водных экосистемах.

7. Круговорот серы.

Из природных источников сера попадает в атмосферу в виде сероводорода,
диоксида серы и частиц сульфатных солей (рис. 5).

Около одной трети соединений серы и 99% диоксида серы – антропогенного
происхождения. В атмосфере протекают реакции, приводящие к кислотным
осадкам:

2SO2 + O2 ( 2SO3 ,
SO3 + H2O ( H2SO4 .

Разработка
Кости и зубы

недр

Выщела-

Сток и чивание

эрозия

Отходы

Выщелачивание

и эрозия

Разложение Отходы и

разложение
Птицы,
питающиеся
рыбой

Кости и зубы

Выпадение из

круговорота

Рис. 4. Круговорот фосфора.

+ O2

Атмосфера

+ Н2О

+ NH3

*
*

**

**

Рис. 5. Круговорот серы.

8. Круговорот воды.

Вода, как и воздух, — основной компонент, необходимый для жизни. В
количественном отношении это самая распространённая неорганическая
составляющая живой материи. Семена растений, в которых содержание воды не
превышает 10%, относятся к формам замедленной жизни. Такое же явление
(ангидробиоз) наблюдается у некоторых видов животных, которые при
неблагоприятных внешних условиях могут терять большую часть воды в своих
тканях.

Вода в трёх агрегатных состояниях присутствует во всех составных
частях биосферы: атмосфере, гидросфере и литосфере. Если воду, находящуюся
в различных гидрогеологических формах, равномерно распределить по
соответствующим областям земного шара, то образуются слои следующей
толщины: для Мирового океана 2700 м, для ледников 100 м, для подземных вод
15 м, для поверхностных пресных вод 0,4 м, для атмосферной влаги 0,03 м.

Основную роль в циркуляции и биогеохимическом круговороте воды играет
атмосферная влага, несмотря на относительно малую толщину её слоя.
Атмосферная влага распределена по Земле неравномерно, что обуславливает
большие различия в количестве осадков в разных районах биосферы. Среднее
содержание водяного пара в атмосфере изменяется в зависимости от
географической широты. Например, на Северном полюсе оно равно 2,5 мм (в
столбе воздуха с поперечным сечением 1 см2), на экваторе — 45 мм.

О механизме гидрогеологического цикла было сказано выше – в разделе
касающемся описания особенностей гидросферы. Вода, выпавшая на сушу, затем
расходуется на просачивание (или инфильтрацию), испарение и сток.
Просачивание особенно важно для наземных экосистем, так как способствует
снабжению почвы водой. В процессе инфильтрации вода поступает в водоносные
горизонты и подземные реки. Испарение с поверхности почвы также играет
важную роль в водном режиме местности, но более значительное количество
воды выделяют сами растения своей листвой. Причём количество воды,
выделяемое растениями, тем больше, чем лучше они ею снабжаются. Растения,
производящие одну тонну растительной массы, поглощают как минимум 100 т
воды.

Главную роль в круговороте воды на континентах играет суммарное
испарение (деревья и почва).

Последняя составляющая круговорота воды на суше – сток. Поверхностный
сток и ресурсы подземных водоносных слоёв обеспечивают питание водных
потоков. Вместе с тем при уменьшении плотности растительного покрова сток
становится основной причиной эрозии почвы.

Как уже отмечалось, вода участвует и в биологическом цикле, являясь
источником кислорода и водорода. Однако фотолиз её при фотосинтезе не
играет существенной роли в процессе круговорота.

9. Антропогенные воздействия на окружающую среду.

Проблемы народонаселения и ресурсов биосферы тесно связаны с реакциями
окружающей природной среды на антропогенные воздействия. Естественное
экологически сбалансированное состояние окружающей среды обычно называют
нормальным. Это состояние, при котором отдельные группы организмов биосферы
взаимодействуют друг с другом и с абиотической средой без нарушения
равновесия круговоротов веществ и потоков энергии в пределах определённого
геологического периода, обусловлено нормальным протеканием природных
процессов во всех геосферах.

Природные процессы могут иметь катастрофический характер, например
извержения вулканов, землетрясения, наводнения, что, однако, также
составляет «норму» природы. Эти и другие природные процессы постепенно, с
геологической скоростью, эволюционируют и в то же время в течение
тысячелетий (на протяжении одного геологического периода) остаются в
квазистатическом сбалансированном состоянии. При этом квазистатически
протекают малый (биологический) и большой (геологический) круговороты
веществ и устанавливаются квазистатические энергетические балансы между
различными геосферами и космосом, что объединяет природу в единое целое.
Круговороты веществ и энергии в биосфере характеризуются определёнными
количественными параметрами, которые квазистатичны и специфичны для данного
геологического периода и для каждого элемента земной поверхности в
соответствии с их географией.

Обычно в качестве основных параметров, характеризующих состояние
окружающей природной среды, выделяют следующие:

1. Энергетический:
Е = Е0 + (Е,
где Е0 – запас энергии в системе в момент времени t0;
(Е – энергетический баланс системы за время (t, т.е. в период от
t = t0 до t = t0 + (t .

2. Водный:
W = W0 + (W,
где W0 – запас воды в системе в момент времени t0;
(W – водный баланс системы за время (t, т.е. в период от t = t0
до t = t0 + (t .

3. Биологический:
В = В0 + (Вв — (Вm,
где B0 – начальная биомасса;
(Вв – биологическая продуктивность;
(Вm – минерализация органики за время (t .

4. Биогеохимический:
G = G0 + (Gв — (Gg,
где G0 – запас химических элементов в системе;
(Gв и (Gg – изменение запаса химических элементов вследствие
биологического и геологического круговоротов веществ.

Эти параметры состояния окружающей среды могут быть количественно
определены экспериментальным путём для каждой точки, района, крупного
региона, природной зоны или ландшафтно-географического пояса, наконец, для
земного шара в целом; они количественно характеризуют состояние и
пространственную неоднородность среды.

Геохимический параметр состояния окружающей среды также существенно
изменился, особенно в отношении биологического и геологического
круговоротов. Под влиянием человеческой деятельности происходят большие
изменения в распределении химических элементов в биосфере, природная и
антропогенная трансформация веществ, а также переход химических элементов
из одних соединений в другие. Природный биологический круговорот веществ
нарушен человеком на площади, достигающей почти половины всей поверхности
суши: антропогенные пустыни, индустриальные и городские земли, пашни, сады,
вторичные низкопродуктивные леса, истощённые пастбища и т.д.

Нарушению геологического круговорота веществ способствовали такие
факторы:

1. Эрозия почвенного покрова и возрастания твёрдого стока в океан;
2. Перемещение огромных масс земной коры;
3. Извлечение из недр значительных количеств руд, горючих и других
ископаемых;
4. Перераспределение солей в почвах, грунтовых и речных водах под
влиянием орошаемого земледелия;
5. Применение минеральных удобрений и ядохимикатов;
6. Загрязнение среды сельскохозяйственными, промышленными и
коммунальными отходами;
7. Поступление в природную среду энергетических загрязнений.

Таким образом, исследование изменений параметров состояния окружающей
природной среды (хотя и на качественном уровне) позволяет сделать вывод об
отсутствии в настоящее время глобального экологического кризиса. В то же
время есть все основания считать теперешнее состояние биосферы нарушенным и
аномальным. Такое состояние может перейти в кризисное, если человечество не
проведёт специальные мероприятия по оздоровлению окружающей его среды.

Использованная литература.

1. М.Д. Гольдфейн, Н.В. Кожевников, А.В. Трубников, С.Я. Шулов – «Проблемы
жизни в окружающей среде. Учебное пособие». Химия. 1996г, №16.

2. А.А. Горелов. «Структура и функции экосистем». Экология. 1998г.

————————
Солнечная энергия

СО2 в воздухе и воде + Н2О в почве

Аэробное дыхание и разложение (растения, животные, деструкторы).

Ископаемое топливо; известняк (запасённая химическая энергия)

Фотосинтез (зелёные растения)

Глюкоза и другие органические соединения; кислород

Вулканы.

СО2 (при сжигании ископаемого топлива и леса)

Растения (фотосинтез)

Растения, животные (дыхание).

Осадки (разрушают горные породы)

СО2 (в атмосфере)

Морские организмы (умирают и опускаются на дно)

Растворённый углерод (выносится в океан)

Осадочные карбонатные породы (перемещаются вглубь земной коры)

Образование ископаемого топлива (при разложении растений и животных)

Уголь
Газ
Нефть

Морские организмы (образуют карбонатные осадочные породы)

Азот
(в атмосфере)

Оксиды азота (в атмосфере)

Аммиак и ионы аммония (в почве и воде)

Животные белки

Растительные белки

Нитраты
(в почве)

Деструкторы

Фосфатные породы и ископаемые остатки животных

Искусственные фосфатные удобрения; моющие средства

Органи-ческий фосфор в клетках растений.

Органи-ческий фосфор в клетках животных.

Растворённые неорганические фосфаты (в реках, озёрах, почве)

Гуано (помёт птиц)

Деструкторы

Мелководные океанические нерастворимые фосфатные отложения

Глубоководные океанические нерастворимые фосфатные отложения

H2S

SО2 + O2 = SО3

Промышленность

H2SO4

Туман и осадки (дождь, снег)

(NH4 )2SO4

Вулканы и горячие источники

Животные

Растения

Сульфаты (SO4) 2-

Разлагающиеся организмы

Сера

H2S

Добавить комментарий