1. Описание объекта
В нашем случае объектом исследования являются совокупность фирм ,
заводов , предприятий . Моделируемым показателем является Y —
производительность труда ( тыс.руб / чел ) .
2. Экономические показатели ( факторы )
Отбор факторов для модели осуществляется в два этапа. На первом идет
анализ, по результатам которого исследователь делает вывод о необходимости
рассмотрения тех или иных явлений в качестве переменных, определяющих
закономерности развития исследуемого процесса, на втором – состав
предварительно отобранных факторов уточняется непосредственно по
результатам статистического анализа.
Из совокупности экономических показателей мы отобрали следующие :
Зависимый фактор:
У- производительность труда, (тыс. руб.)
Для модели в абсолютных показателях
Независимые факторы:
Х1 — стоимость сырья и материалов ( тыс.руб.)
Х2 — заработная плата ( тыс.руб. )
Х3 — основные промышленно-производственные фонды ( тыс.руб. )
Х4 — отчисления на социальное страхование ( тыс.руб. )
Х5 — расходы на подготовку и освоение производства ( тыс.руб. )
Х6 — расходы на электроэнергию ( тыс.кВт час. )
Данные представлены в таблице 1.
Таблица
1
|№ Объекта |Y |X1 |X2 |X3 |X4 |X5 |X6 |
|наблюдения | | | | | | | |
|1 |10.6|865 |651 |2627 |54 |165 |4.2 |
|2 |19.7|9571 |1287 |9105 |105 |829 |13.3|
|3 |17.7|1334 |1046 |3045 |85 |400 |4 |
|4 |17.5|6944 |944 |2554 |79 |312 |5.6 |
|5 |15.7|14397 |2745 |15407 |229 |1245 |28.4|
|6 |11.3|4425 |1084 |4089 |92 |341 |4.1 |
|7 |14.4|4662 |1260 |6417 |105 |496 |7.3 |
|8 |9.4 |2100 |1212 |4845 |101 |264 |8.7 |
|9 |11.9|1215 |254 |923 |19 |78 |1.9 |
|10 |13.9|5191 |1795 |9602 |150 |599 |13.8|
|11 |8.9 |4965 |2851 |12542 |240 |622 |12 |
|12 |14.5|2067 |1156 |6718 |96 |461 |9.2 |
Для модели в относительных показателях
Х1- удельный вес стоимости сырья и материалов в себестоимости продукции
Х2- удельный вес заработной платы в себестоимости продукции
Х3- фондовооруженность одного рабочего, тыс.руб./чел.
Х4- удельный вес отчислений на соц. страхования в себестоимости продукции
Х5- удельный вес расходов на подготовку и освоение производства в
себестоимости продукции
Х6- электровооруженность одного рабочего, тыс. кВт./ чел.
Данные представлены в таблице 2.
Таблица
2
|№ Объекта |Y |X1 |X2 |X3 |X4 |X5 |X6 |
|наблюдения | | | | | | | |
|1 |10.6|16,8 |12,6 |5,7 |1,0 |3,2 |0,06|
|2 |19.7|33,1 |4,5 |8,0 |0,4 |2,8 |0,08|
|3 |17.7|9,9 |7,7 |4,6 |0,6 |3,0 |0,08|
|4 |17.5|63,1 |8,6 |4,1 |0,7 |2,8 |0,08|
|5 |15.7|32,8 |6,3 |8,0 |0,5 |2,8 |0,10|
|6 |11.3|40,3 |9,9 |5,2 |0,8 |3,1 |0,08|
|7 |14.4|28,3 |7,7 |7,1 |0,6 |3,0 |0,09|
|8 |9.4 |25,2 |14,6 |7,2 |1,2 |3,2 |0,11|
|9 |11.9|47,3 |9,9 |4,5 |0,7 |3,0 |0,13|
|10 |13.9|26,8 |9,3 |9,4 |0,8 |13,1 |0,11|
|11 |8.9 |25,4 |14,6 |6,5 |1,2 |3,2 |0,08|
|12 |14.5|14,2 |8,0 |8,5 |0,7 |3,2 |0,13|
3. Выбор формы представления факторов
В данной работе мы не используем фактор времени, т.е. в нашем случае
мы используем статистическую модель. В 1-ом случае мы строим статистическую
модель в абсолютных показателях, во 2-м – статистическую модель в
относительных показателях. Проанализировав полученные результаты, мы
выбираем рабочую статистическую модель.
4. Анализ аномальных явлений
При визуальном просмотре матрицы данных легко улавливается аномалия на
пятом объекте в таблице 1,2 . Здесь все факторы завышены в несколько раз .
Скорее всего мы сталкиваемся в данном случае с заводом-гигантом . Поэтому
данное наблюдение мы отбрасываем . Теперь формируем обновлённую матрицу
данных .
Таблица 3
|№ Объекта |Y |X1 |X2 |X3 |X4 |X5 |X6 |
|наблюдения | | | | | | | |
|1 |10.6|865 |651 |2627 |54 |165 |4.2 |
|2 |19.7|9571 |1287 |9105 |105 |829 |13.3|
|3 |17.7|1334 |1046 |3045 |85 |400 |4 |
|4 |17.5|6944 |944 |2554 |79 |312 |5.6 |
|6 |11.3|4425 |1084 |4089 |92 |341 |4.1 |
|7 |14.4|4662 |1260 |6417 |105 |496 |7.3 |
|8 |9.4 |2100 |1212 |4845 |101 |264 |8.7 |
|9 |11.9|1215 |254 |923 |19 |78 |1.9 |
|10 |13.9|5191 |1795 |9602 |150 |599 |13.8|
|11 |8.9 |4965 |2851 |12542 |240 |622 |12 |
|12 |14.5|2067 |1156 |6718 |96 |461 |9.2 |
Таблица 4
|№ Объекта |Y |X1 |X2 |X3 |X4 |X5 |X6 |
|наблюдения | | | | | | | |
|1 |10.6|16,8 |12,6 |5,7 |1,0 |3,2 |0,06|
|2 |19.7|33,1 |4,5 |8,0 |0,4 |2,8 |0,08|
|3 |17.7|9,9 |7,7 |4,6 |0,6 |3,0 |0,08|
|4 |17.5|63,1 |8,6 |4,1 |0,7 |2,8 |0,08|
|6 |11.3|40,3 |9,9 |5,2 |0,8 |3,1 |0,08|
|7 |14.4|28,3 |7,7 |7,1 |0,6 |3,0 |0,09|
|8 |9.4 |25,2 |14,6 |7,2 |1,2 |3,2 |0,11|
|9 |11.9|47,3 |9,9 |4,5 |0,7 |3,0 |0,13|
|10 |13.9|26,8 |9,3 |9,4 |0,8 |13,1 |0,11|
|11 |8.9 |25,4 |14,6 |6,5 |1,2 |3,2 |0,08|
|12 |14.5|14,2 |8,0 |8,5 |0,7 |3,2 |0,13|
4. Анализ матрицы коэффициентов парных корреляций для абсолютных величин
Таблица 5
|№ фактора |Y |X1 |X2 |X3 |X4 |X5 |X6 |
|Y |1.00 |0.52|-0.22|-0.06|-0.23|0.44|0.12|
|X1 |0.52 |1.00|0.38 |0.52 |0.38 |0.74|0.60|
|X2 |-0.22|0.38|1.00 |0.91 |1.00 |0.68|0.74|
|X3 |-0.06|0.52|0.91 |1.00 |0.91 |0.86|0.91|
|X4 |-0.23|0.38|1.00 |0.91 |1.00 |0.67|0.74|
|X5 |0.44 |0.74|0.68 |0.86 |0.67 |1.00|0.85|
|X6 |0.12 |0.60|0.74 |0.91 |0.74 |0.85|1.00|
Из таблицы 4 находим тесно коррелирующие факторы. Налицо
мультиколлениарность факторов Х2 и Х4 . Оставим только один фактор Х2 . Так
же достаточно высокий коэффициент корреляции ( 0.91 ) между факторами Х2 и
Х3 . Избавимся от фактора Х3 .
5. Построение уравнения регрессии для абсолютных величин
Проведём многошаговый регрессионный анализ для оставшихся факторов :
Х1 , Х2 , Х5 , Х6 .
а) Шаг первый .
Y = 12. 583 + 0 * X1 + 0.043 * X2 + 0.021 * X5 — 0.368 * X6
Коэффициент множественной корреляции = 0.861
Коэффициент множественной детерминации = 0.742
Сумма квадратов остатков = 32.961
t1 = 0.534 *
t2 = 2.487
t5 = 2.458
t6 = 0.960 *
У фактора Х1 t-критерий оказался самым низким . Следовательно фактором Х1
можно пренебречь . Вычеркнем этот фактор .
б) Шаг второй.
Y = 12.677 — 0.012 * X2 + 0.023 * X5 — 0.368 * X6
Коэффициент множественной корреляции = 0.854
Коэффициент множественной детерминации = 0.730
Сумма квадратов остатков = 34.481
t2 = 2.853
t5 = 3.598
t6 = 1.016 *
У фактора Х6 t-критерий оказался самым низким . Следовательно фактором Х6
можно пренебречь . Вычеркнем этот фактор .
в) Шаг третий .
Y = 12.562 — 0.005 * X2 + 0.018 * X5
Коэффициент множественной корреляции = 0.831
Коэффициент множественной детерминации = 0.688
Сумма квадратов остатков = 39.557
t2 = 3.599
t5 = 4.068
В результате трёхшаговой регрессии мы получили рабочее уравнение.
6. Анализ матрицы коэффициентов парных корреляций для относительных
величин
Таблица 5
|№ фактора |Y |X1 |X2 |X3 |X4 |X5 |X6 |
|Y |1.00 |0.14|-0.91|0.02 |-0.88|-0.0|-0.1|
| | | | | | |1 |1 |
|X1 |0.14 |1.00|-0.12|-0.44|-0.17|-0.0|0.02|
| | | | | | |9 | |
|X2 |-0.91|-0.1|1.00 |-0.12|0.98 |-0.0|-0.3|
| | |2 | | | |1 |8 |
|X3 |0.02 |-0.4|-0.12|1.00 |0.00 |0.57|0.34|
| | |4 | | | | | |
|X4 |-0.88|-0.1|0.98 |0.00 |1.00 |0.05|-0.0|
| | |7 | | | | |5 |
|X5 |-0.01|-0.0|-0.01|0.57 |0.05 |1.00|0.25|
| | |9 | | | | | |
|X6 |-0.11|0.02|-0.38|0.34 |-0.05|0.25|1.00|
В таблице выявляем тесно коррелирующие факторы. Таким образом, не трудно
заметить достаточно высокий коэффициент корреляции между факторами Х2 и Х4.
Избавимся от Х2
7. Построение уравнения регрессии для относительных величин
а) Шаг первый .
Y = 25,018+0*Х1+
Коэффициент множественной корреляции = 0,894
Коэффициент множественной детерминации = 0.799
Сумма квадратов остатков = 26,420
t1 = 0,012*
t2 = 0,203*
t3 =0.024*
t4 =4.033
t5 = 0.357*
t6 = 0.739 *
У фактора Х1 t-критерий оказался самым низким . Следовательно фактором Х1
можно пренебречь . Вычеркнем этот фактор .
б) Шаг второй .
Y = e ^3.141 * X2^(-0.722) * X5^0.795 * X6^(-0.098)
Коэффициент множественной корреляции = 0.890
Коэффициент множественной детерминации = 0.792
Сумма квадратов остатков = 0.145
t2 = 4.027
t5 = 4.930
t6 = 0.623 *
У фактора Х6 t-критерий оказался самым низким . Следовательно фактором Х6
можно принебречь . Вычеркнем этот фактор .
в) Шаг третий .
Y = e ^3.515 * X2^(-0.768) * X5^0.754
Коэффициент множественной корреляции = 0.884
Коэффициент множественной детерминации = 0.781
Сумма квадратов остатков = 0.153
t2 = 4.027
t5 = 4.930
В результате трёхшаговой регрессии мы получили рабочее уравнение :
Y =
Экономический смысл модели :
При увеличении расходов на подготовку и освоение производства
производительность труда будет увеличиваться . Это означает что на данных
предприятиях есть резервы для расширения производства , для введения новых
технологий и инноваций с целью увеличения прибыли .
При увеличении заработной платы производительность труда будет
снижаться . Это , скорее всего , будет происходить из-за того , что рабочие
на данных предприятиях получают и так высокие зарплаты , либо фонд
заработной платы используется по максимуму и дальнейший его рост приведёт к
непредвиденным расходам .
8. Сравнительный анализ линейной и степенной моделей
Сравнивая линейную и степенную регрессионную модель видим , что
статистические характеристики степенной модели превосходят аналогичные
характеристики линейной модели . А именно : коэффициент множественной
детерминации у степенной модели равен 0.781 , а у линейной — 0.688 .
Это означает , что факторы , вошедшие в степенную модель , объясняют
изменение производительности труда на 78.1 % , тогда как факторы , вошедшие
в линейную модель , — на 68,8 % ; сумма квадратов остатков степенной
модели ( 0.153 ) значительно меньше суммы квадратов остатков линейной
модели ( 39.557 ) . Следовательно значения полученные с помощью степенной
модели близки к фактическим .